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Abstract-By means of a higher·order plate-bending theory developed by Whitney and Pagano
along with Berger's hypothesis, large amplitude forced vibrations of moderately thick laminated
specially orthotropic plates are investigated. The theory includes shear deformation and rotatory
inertia in the same manner as Mindlin's theory for isotropic homogeneous plates. The in-plane
forces due to large deflections are assumed to be constant within the plate domain. Considering
time·harmonic forcing a Kantorovich-Galerkin procedure provides the formulation of this problem
in the lower band of the frequency domain. In the case of laminates made of isotropic layers an
analogy to thin homogeneous plates is given. which is complete in the case of polygonal planforms
and hard hinged supports. Furthermore, the plate deflection is determined by the solution of two
(second-order) Helmholtz-Klein-Gordon boundary value problems. Inserting these results into a
proper domain integral leads to Berger's normal force. This problem-oriented strategy renders the
nonlinear frequency response functions of dclkction of the undamped layered plate.

I. INTRODUCTION

Dynamic problems of homogeneous moderately thick plates are etTiciently dealt with
according to the theory of Mindlin (1951), which yields precise approximations in com
parison with solutions deduced from the three-dimensional equations of elasticity within a
wide range of the thickness·span ratio. Herrmann and Armenakas (1960) established a
linear vibration theory of shear deformable plates under initial stress, An extension of
Mindlin's theory to heterogeneous anisotropic plates has been derived by Whitney and
Pagano (1970), which will be used in the following to determine flexural vibrations of
polygonal layered plates with hard hinged supports.

Taking into account large flexural vibmtions we make use of Berger's approximation:
Berger (1955) derived a decomposition of v. Karman's system of two coupled nonlinear
differential equations for plate deflection and stress function by neglecting the strain energy
density due to the second invariant of the plate's middle-surface strain. Since the resulting
equation is uncoupled and quasi-linear it has been extensively applied in place of the
complete set of v. Karman's equations; the influence of the v. Karman's in-plane forces is
replaced by tensile forces of hydrostatic type being constant within the whole plate domain.
Berger's equation has frequently been discussed for static and dynamic problems of homo
geneous plates, see e.g. Nowinski and Ohnabe (1972), Schmidt (1974), Wah (1963), Wu
and Vinson (1969a), Irschik (1990). and Heuer ef al. (1990), and it has also been applied
to vibration problems of laminates by Wu and Vinson (1969b, 1970) and Bennett (1971).
The dynamic analog of the v. Karman theory for homogeneous thin plates has been derived
by Herrmann (1955) and extended to laminated anisotropic plates by Whitney and Leissa
(1969). It is now widely accepted that Berger's hypothesis gives a fairly good approximation
to the problem, provided that the in-plane displacements are restrained on the boundary.

Subsequently, the nonlinear coupled equations of motion are summarized for sym
metric laminates composed of multiple specially orthotropic layers. A harmonic uniform
force-excitation is assumed and application of the Kantorovich-Galerkin procedure (see
Szemplinska-Stupnicka, 1983) yields the boundary value problem which is to be solved for
the undamped frequency response functions.

In the case of plates made of multiple isotropic layers the boundary value problem
reduces to that of a homogeneous Mindlin-plate with effective stiffnesses. After eliminating

t Dedicated to Professor George Herrmann on the occasion of his 70th birthday.
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the cross-sectional rotations a single fourth-order equation for the deflection is obtained.
As shown in earlier works of lrschik (1985) and Irschik et al. (1989). this problem can be
decomposed into two Helmholtz equations with homogeneous boundary conditions. which
finally are solved iteratively along with the computation of Berger's deflection-dependent
in-plane force.

In the numerical example the nonlinear frequency response functions of a composite
plate strip are worked out in detail.

2. EQUATIONS OF MOTION FOR NONLINEAR VIBRATIONS OF MODERATELY THICK
AND LAYERED PLATES

We consider a laminated plate with N layers ofspecialized orthotropy where the elastic
properties are distributed symmetrically with respect to the middle surface. According to
the theory of Whitney and Pagano (1970) for shear deformable layered plates with rotatory
inertia. which is based on linear distribution of the in-plane displacements in the thickness
direction. plate motions may be expressed by a sixth-order system of differential equations
in terms of the deflection of the plate's middle plane II' and the cross-sectional rotations If,.
!/i,. Also taking into account hydrostatic inplane forces if renders (compare Kollbrunner
and Herrmann (1956). and Irschik (1985) for homogeneous plates):

( I )

(2)

(3)

where the differential expres~ions .Ire

The parameters arc determined by homogenization: perfect bond of the laminates is under
stood:

(8)

k = 1.2....• N. (9)

(10)

/(1 = 5/6 is a shear factor. and p{kl stands for the mass density of the kth layer: C~;l arc the
elements of the elasticity tensor of the linear clastic orthotropic lamina k. and fi denotes
the lateral loading.

Furthermore. since large deflections arc to he considered by means of the approxi
mation of Berger (1955). the in-plane forces arc approximated by hydrostatic tensile forces
,1. The resulting equations arc of the form of eqns (I )~(3) : sec Wu and Vinson (1970) for
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the detailed derivation. Following the arguments of Wu and Vinson (1969a), Berger's
normal force is not explicitly effected by the influence of shear.

[f the plate edges are prevented from in-plane motions, then the uniform in-plane force
J is computed from (see. e.g.. Sathyamoorthy (1978»

(II)

with n being the area of the plate domain.
[n case of higher forcing frequency the assumption oflinear distribution of the in-plane

displacements has to be replaced by approximations according to higher-order theories.
Herrmann and Achenbach (1967) developed the "effective stiffness theory", for example,
and further improvements are due to Sun and Whitney (1973), Reddy and Chao (1982),
and Reddy (1984). An extensive review of shear deformation theories for multilayered
composite plates is presented by Noor and Burton (1989).

3. SPECTRAL FORMULATION OF NONLINEAR VIBRATIONS

Large deflections of plates which are loaded by a time-harmonic lateral force,
p(x. y; I) = p(x, y) sin WI, are investigated. Adopting the method of Kantorovich (compare
Szemplinska-Stupnicka (1983» to the nonlinear plate problem we assume that the steady
state response is represented by

li'*(x. y; I) = w(x. y) sin wI.

.f,*(x. y; t) = ,p,(x, y) sin wI, i = x. y.

( 12)

( (3)

where a "best choice" of functions w(x, )-'), I/I,(x. y) has to be determined. Therefore, this
time-harmonic approximation enters the dillcrential operators of eqns (I )_.(3). finally the
"error" is forced to be zero in the avemge sense of the Galcrkin procedure,

I i~' (' r -,* * *'.' _. _ .,
:/, \ \I , 'f" .f" ( SIO wI d(wI) - O. I - I, _. 3,

w Il

and as a result the equations of motion in the frequency domain are obtained:

1 1 - .,Ld 11'.1/1 (0 rp.-( + :I!I(w..« + }'Il'... ,.) + P+ Alw-w = 0,

( 14)

( 15)

(16)

( 17)

where II is defined by eqn (II) when Ii' is replaced by the time-reduced counterpart w.
In particular, for plates which are composed of multiple isotropic layers, eqns (15)

(17) can be reduced to a set of Herrmann-Armenakas-type equations for a homogeneous
Mindlin-plate with effective stiffnesses and hydrostatic in-plane force; see Heuer (f991). In
that case. after eliminating the cross-sectional rotations. a single fourth-order differential
equation for w(x, y) is obtained, which corresponds to the equation ofa fictitious Lagrange
Kirchhoff plate with bending stiffness K, uniform inplane force n. and inertia terms ji:

( 18)

The coefficients and the forcing terms are

-, '[ - 1 1II = :In-w" D1Ift.fs+r+ 4firs ,

( 19)

(20)
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K::; psj{[1 + insj(1 +v)},

AliIn(w) ::; - - I\'LlI\' dQ,
2Q n

(21)

(22)

(23)

(24)

(25)

For vanishing imposed loading, eqn (18) provides the "nonlinear normal modes" of free
vibrations. The boundary conditions of shear deformable plates with hard hinged supports
can be modelled in the form (see Mindlin (1951):

(26)

with the bending moment m and a local (fl, s)-coordinate system at boundary C with normal
(/I). Considering only polygonal contours C the third condition of eqn (26) simplifies to
that at a straight edge segment, t/J ',' = If; n,n = O. Inserting these relations into cqn (17) finally
leads to two boundary conditions in \I':

c: II' = O. LlII' = -,;'(1 +v). (27)

The complete boulHbry value problem determined by eqns (H{) and (27) is elliciently
solved by a membrane analogy. The latter has been worked out for linear free and forced
vibrations of homogeneous Mindlin-plates by Irschik (1985) and by Irschik et al. (1988.
19H9), In lhe course of this method of analysis the dilTerential equation (18) of the total
ddlcction is del.:omposed inlo a set of two second-order problems, each corresponding to
the boundary value problem of the dellection of a prestressed linear elastic membrane:

where

1\'= 11'1+11',. (28)

(29)

(30)

Inserting eqns (28), (29) into eqn (18) and comparing the coefficients of p and Llp. respec
tively. renders two equations for the yet unknown coefticients OJ :

(31 )

(32)

Their solution gives at once

(33)

Subsequently. eqns (28) and (29) are inserted into the boundary conditions (27), and
considering eqn (32) leads to the homogeneous boundary conditions of the associated
membrane problems:
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c: w, = 0, j = I, 2. (34)

Berger's integral equation (24), which bears the nonlinearity, is reformulated by means of
eqns (28), (29) to become:

(35)

Hence, the underlying boundary value problem is. with respect to deflections "', governed
by the two second-order Helmholtz-type equations (29) with Dirichlet's conditions (34).

4 NUMERICAL RESULTS AND COMPUTATIONAL ASPECTS

For a fixed excitation frequency w, eqn (35) is a nonlinear equation for the in-plane
force n. since the formal solution of the linear boundary value problems (28). (29) provide
11'1' ll'~ as functions of n. Thus. the geometrically nonlinear problem is reduced to a single
nonlinear equation, which, dependent on the range of frequency. has one. three or more
solutions. These roots are determined by means of numerical standard procedures.

The method is demonstrated for a plate strip, where in case ofI' = I'll = const. (compare
Chwalla (1962» :

lI'i = I'll ~~ (r I - Hexp UA/) +exp (-i,J;,/)ll·[exp UAx) -exp ( -iAx)l![exp (ifi,/)
"X,

-exp( -iJ;;/)] + ![exp(iJ;'x) +exp( -ifi~x)J-I), i = J=-r-. j = 1,2,
(.16)

and Ihe codlicients "X, (11) and "X/I, (II) arc defined according to eqns (30) .tnd (33), respectively.
After analytic.tl determination of Berger's integral, eqn (35) is solved iteratively by the
"regula falsi" algorithm us. Its solutions n,,(w) arc inserted into eqn (36) and the nonlinear
frequency response function (rRF) is finally obtained by superposition of U'I and Il'~. As
an illustrative example. the FRFs of a plate strip (length I. total plate thickness II. and
stilrnesses DII and D11) arc evaluated. Passing over to a non-dimensional formulation, the
input parameters arc specified through ii = II/I = 0.15. v = D 11/D II = 0.3. and a non
dimensional forcing frequency is defined by

(37)

Figure I shows the nonlinear FRFs Ii' = u'(x = 1/2. ).)/11 within the frequency range.

4.0

tSinwc
I II

3.5

~
3.0

~x II

2.5 ,,
2.0

,
"......

1.5 ......
"
"1.0 "".,, ,

. 5 ' ...
A

O.
Al ~5a 1 2 A2 3 4 6 7 8

Fig. I. Linc.. r (----1 and nonlinear (-) non-dimensjonal undamped frequency response function
". "" ...(x "" 112. i.)1r as a function of), = wlhftI6(I-v)0,,; Po = Po/l/O" = 10. 50. 100. and

r; "" Irll = 0.15. v = 0,:/0" = 0.3.



ISIS R. HEt'ER 1'1 u/.

o< ;. ~ 8, for various load factors po = p,J 1 D I I = 10, 50, 100, compared to the linear
FRF for p" = IO. Note that due to the uniform load distribution only the symmetric
vibration modes (I and 3 in the above given frequency band) are excited.

5. CO:--;CLlDI:--;G RE\I.-\RKS

The problem of forced nonlinear vibrations of layered plates is solved. The influence
of shear and rotatory inertia is taken into account. Using Berger's approximation of v.
Karman's nonlinear plate equations along with a Kantorovich-Galerkin procedure renders
the frequency domain formulation of this problem. For laminates composed of multiple
isotropic layers an efficient membrane analogy, which has been established for homogeneous
plates, is adopted. As numerical example the nonlinear frequency response functions of a
composite plate strip under harmonic uniform force-excitation are compared to the linear
solution.
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