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Abstract—By means of a higher-order plate-bending theory developed by Whitney and Pagano
along with Berger's hypothesis, large amplitude forced vibrations of moderately thick laminated
specially orthotropic plates are investigated. The theory includes shear deformation and rotatory
inertia in the same manner as Mindlin's theory for isotropic homogeneous plates. The in-plane
forces due to large deflections are assumed to be constant within the plate domain. Considering
time-harmonic forcing a Kantorovich-Galerkin procedure provides the formulation of this problem
in the lower band of the frequency domain. In the case of laminates made of isotropic layers an
analogy to thin homogeneous plates is given, which is complete in the case of polygonal planforms
and hard hinged supports. Furthermore. the plate deflection is determined by the solution of two
(second-order) Helmholtz-Klein-Gordon boundary value problems. Inserting these results into a
proper domain integral leads to Berger's normal force. This problem-oriented strategy renders the
nonlinear frequency response functions of deflection of the undamped layered plate.

t. INTRODUCTION

Dynamic problems of homogencous moderately thick plates are efficiently dealt with
according to the theory of Mindlin (1951), which yiclds precise approximations in com-
parison with solutions deduced from the three-dimensional equations of elasticity within a
wide range of the thickness-span ratio. Herrmann and Armenakas (1960) established a
lincar vibration theory of shear deformable plates under initial stress. An extension of
Mindlin's theory to heterogencous anisotropic plates has been derived by Whitney and
Pagano (1970), which will be used in the following to determine flexural vibrations of
polygonal layered plates with hard hinged supports.

Taking into account large flexural vibrations we make use of Berger’s approximation :
Berger (1955) derived a decomposition of v. Karman’s system of two coupled nonlinear
differential equations for plate deflection and stress function by neglecting the strain energy
density due to the second invariant of the plate’s middle-surface strain. Since the resulting
equation is uncoupled and quasi-lincar it has been extensively applied in place of the
complete set of v. Karman's equations ; the influence of the v. Karman’s in-plane forces is
replaced by tensile forces of hydrostatic type being constant within the whole plate domain.
Berger's equation has frequently been discussed for static and dynamic problems of homo-
geneous plates, see e.g. Nowinski and Ohnabe (1972), Schmidt (1974), Wah (1963), Wu
and Vinson (1969a), Irschik (1990), and Heuer er al. (1990), and it has also been applied
to vibration problems of laminates by Wu and Vinson (1969b, 1970) and Bennett (1971).
The dynamic analog of the v. Karman theory for homogeneous thin plates has been derived
by Herrmann (1955) and extended to laminated anisotropic plates by Whitney and Leissa
(1969). It is now widely accepted that Berger's hypothesis gives a fairly good approximation
to the problem, provided that the in-planc displacements are restrained on the boundary.

Subsequently, the nonlincar coupled equations of motion are summarized for sym-
metric laminates composed of multiple specially orthotropic layers. A harmonic uniform
force-excitation is assumed and application of the Kantorovich-Galerkin procedure (see
Szemplinska-Stupnicka, 1983) yiclds the boundary value problem which is to be solved for
the undamped frequency response functions.

In the case of plates made of multiple isotropic layers the boundary value problem
reduces to that of a homogeneous Mindlin-plate with effective stiffnesses. After eliminating

t Dedicated to Professor George Herrmann on the occasion of his 70th birthday.

1813



1814 R. HEUER ¢t ul.

the cross-sectional rotations a single fourth-order equation for the deflection is obtained.
As shown in earlier works of Irschik (1985) and Irschik er af. (1989), this problem can be
decomposed into two Helmholtz equations with homogeneous boundary conditions, which
finally are solved iteratively along with the computation of Berger's deflection-dependent
in-plane force.

In the numerical example the nonlinear frequency response functions of a composite
plate strip are worked out in detail.

2. EQUATIONS OF MOTION FOR NONLINEAR VIBRATIONS OF MODERATELY THICK
AND LAYERED PLATES

We consider a laminated plate with ¥V layers of specialized orthotropy where the elastic
properties are distributed symmetrically with respect to the middle surface. According to
the theory of Whitney and Pagano (1970) for shear deformable layered plates with rotatory
inertia, which is based on linear distribution of the in-plane displacements in the thickness
direction, plate motions may be expressed by a sixth-order system of differential equations
in terms of the deflection of the plate’s middle plane it and the cross-sectional rotations .
.. Also taking into account hydrostatic inplane forces # renders (compare Kollbrunner
and Herrmann (1956), and irschik (1985) for homogeneous plates):

YRl = L = = 0, (1)
jl:‘;" (p\-'pv:‘ = 42{’;" 'p\‘!p\ : _”ﬁr.ll = 0- (2)
Sl = LW A ) = M, = 0, (3)

where the differential expressions are
Lo ol =D o Do+ Do o+ Dol = K7 A5 OF  +10), 4)
Lol Bt = Do+ (D Do) o+ Dol = KA L0+ ), (5)
Lyiwofo,) = A0+ ) +K7AL00,, +10, ). (6)

The parameters are determined by homogenization ; perfect bond of the laminates is under-
stood :

N 4
(A, D) =Y J QM (1,27 d=, (7
kol W
X Sx
(M.ry= 3% pEHE 2Ty dz, (8)
k=1 Jda
(¢, —eneyfen)™ i j=1.2 )
thy S~ 1 9 :
i ‘*{Cff) Q=356 k 12000 0V, %)
y= (Anfdi) (10

x? = 5/6 is a shear factor, and p*' stands for the mass density of the Ath layer; ¢ij’ are the
elements of the elasticity tensor of the lincar clastic orthotropic lamina k. and 7 denotes
the lateral loading.
Furthermore, since large deflections arc to be considered by means of the approxi-
mation of Berger (1955), the in-plane forces are approximated by hydrostatic tensile forces
A. The resulting equations are of the form of eqns (1)-(3) : see Wu and Vinson (1970) for
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the detailed derivation. Following the arguments of Wu and Vinson (1969a), Berger’s
normal force is not explicitly effected by the influence of shear.

If the plate edges are prevented from in-plane motions, then the uniform in-plane force
# is computed from (see, e.g.. Sathyamoorthy (1978))

. A
A = - 55 g')' WOF o+ 70 ,,) dQ (1)
o ¢

with Q being the area of the plate domain.

In case of higher forcing frequency the assumption of linear distribution of the in-plane
displacements has to be replaced by approximations according to higher-order theories.
Herrmann and Achenbach (1967) developed the “effective stiffness theory™, for example,
and further improvements are due to Sun and Whitney (1973). Reddy and Chao (1982),
and Reddy (1984). An extensive review of shear deformation theories for multilayered
composite plates is presented by Noor and Burton (1989).

3. SPECTRAL FORMULATION OF NONLINEAR VIBRATIONS

Large deflections of plates which are loaded by a time-harmonic lateral force,
Al y: 0) = p(x, p)sinwt, are investigated. Adopting the method of Kantorovich (compare
Szemplinska-Stupnicka (1983)) to the noalincar plate problem we assume that the steady-
state responsce is represented by

W*(n o) = w(x, y)sinmt, (12)
JrXe.yi) =y, y)sinwt, i=x,y, (13)
where a “*best choice™ of functions w(x, »), ¥,(x, ») has to be determined. Thercfore, this

time-harmonic approximation enters the differential operators of eqns (1)-(3). Finally the
“error” is forced to be zero in the average sense of the Galerkin procedure,

l n ) )
- J e gt sinwrd(on) =0, i=1,23, (14)
w Jy

and as a result the equations of motion in the frequency domain are obtained

LI(W'!/’\'"/’}'}+r(’)1‘p.\‘ =0- (15)
Lyfwipooth,f +rw’y, =0, (16)
Lilwog o) +in(w o +yw,,)+p+ Mw’w =0, (17)

where n is defined by eqn (11) when i is replaced by the time-reduced counterpart w.

In particular, for plates which are composed of multiple isotropic layers, eqns (15)-
(17) can be reduced to a set of Herrmann-Armenakas-type equations for a homogeneous
Mindlin-plate with effective stiffnesses and hydrostatic in-plane force ; see Heuer (1991). In
that case, after eliminating the cross-sectional rotations, a single fourth-order differential
cquation for w(x, ) is obtained, which corresponds to the equation of a fictitious Lagrange-
KirchhofT plate with bending stiffness K, uniform inplane force 4, and inertia terms j:

I('AA;;’—riA&"—;i;t"= §—R(1+Vv)AR. (18)
The coefficients and the forcing terms are
K =D, \[l +3ns], (19)

"= in—w?[DMs+r+ inrs). (20)
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i = Mw*(1 —-srw?), 2n

G = p(1 —srw?), (22

K= ps/ {1+ ins](1 + )}, (23)
n(w) = — % L wAw dQ) (24)
s = 1/Kk*Ays. v= DDy, (25)

For vanishing imposed loading, eqn (18) provides the “‘nonlinear normal modes™ of free
vibrations. The boundary conditions of shear deformable plates with hard hinged supports
can be modelled in the form (see Mindlin (1951)):

Cow=0, ¥,=0, m,=D,Wunt+w,) =0, (26)

with the bending moment /mand a local (1, 5)-coordinate system at boundary C with normal
(). Considering only polygonal contours C the third condition of eqn (26) simplifies to
that at a straight edge segment, ., = v, , = 0. Inserting these relations into egn (17) finally
leads to two boundary conditions in w:

Ciw=0, Aw= —&(1+v). @n

The complete boundary value problem determined by eqns (18) and (27) is cliiciently
solved by a membrane analogy. The lutter has been worked out for linear free and foreed
vibrations of homogencous Mindlin-plates by Irschik (1985) and by Irschik ef al. (1988,
1989). In the course of this method of analysis the differential equation (18) of the total
deflection is decomposed into a set of two second-order problems, each corresponding to
the boundary value problem of the deflection of a prestressed linear elastic membrane:

W=y wy, (28)
Aw, +aw, = —a p, 29)

where
2, = —[A+(~ DA +4KE)"*]2R, j=1,2. (30

Inserting cgns (28), (29) into eqn (18) and comparing the coefficients of p and Ap, respec-
tively, renders two equations for the yet unknown cocflicients 4, :

230, + 230, + 2,0, +2,0,]/K = (1 —=srw?)/K, 3D
2,0, + 0.0, = s/{1 + 3ns]. 32)
Their solution gives at once
2,0, = + (= 1)/ {(1 —sre®) /R +2,5/[1 + ins]} /(2 —22). (33)
Subsequently, eqns (28) and (29) are inserted into the boundary conditions (27), and

considering eqn (32) leads to the homogeneous boundary conditions of the associated
membrane problems:
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C:w, =0, j=12 (34)

Berger's integral equation (24), which bears the nonlinearity, is reformulated by means of
eqns (28). (29) to become:

A
n(w) = — -,‘;2‘ J; (v +w)(=2,0,p—2 W)+ (=20, p—2,w,)] dQ. (33)

Hence. the underlying boundary value problem is, with respect to deflections w, governed
by the two second-order Helmholtz-type equations (29) with Dirichlet’s conditions (34).

4 NUMERICAL RESULTS AND COMPUTATIONAL ASPECTS

For a fixed excitation frequency w. eqn (35) is a nonlinear equation for the in-plane
force n. since the formal solution of the linear boundary value problems (28). (29) provide
wy. wy as functions of n. Thus. the geometrically nonlinear problem is reduced to a single
nonlinear equation, which, dependent on the range of frequency, has one, three or more
solutions. These roots are determined by means of numerical standard procedures.

The method is demonstrated for a plate strip, where in case of p = p,, = const. (compare
Chwalla (1962)):

0
W, = po ’; ({1 = Yexp (i /a 1) +exp (— i/2, D]} exp (iy/2, ) —exp ( —iy/a, 0]/ fexp (iy/2, 1)

~cxp(—1'\/&;1)]+%[cxp(iﬁx)i»cxp(—i\/&;x)]—l), i= \/:l Jj=1L2
(36)

and the cocflicients x, (1) and 2,0, (n) are defined according to cqns (30) and (33), respectively.
After analytical determination of Berger's integral, eqn (35) is solved iteratively by the
“reguli falsi™ algorithmus. Its solutions n, (w) arc inscrted into egn (36) and the nonlincar
frequency response function (FRF) is finally obtained by superposition of wy and w,. As
an illustrative example, the FRFs of a plate strip (length /, total plate thickness A, and
stiffnesses D, and D,) are evaluated. Passing over to a non-dimensional formulation, the
input parameters are specified through i = /I = 0.15, v = D,,/D,, = 0.3, and a non-
dimensional forcing frequency is defined by

1= wlh/MI6(1=v)D,,. (37

Figure | shows the nonlincar FRFs i = w(x = {/2, 2)/h within the frequency range,
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Fig. 1. Linear (----} and nonlincar (—-) non-dimensional undamped frequency response function
W = w(x =2, 4)h as a function of A = wlh/M/6(1—=v)D,\: p, = pyl*/D,, = 10, 50. 100. and
fF=hil=015"v=D,yD,, =0.3.
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0 < 4 < 8. for various load factors j, = p,/ " 'D;, = 10. 30, 100. compuared to the linear
FRF for p, = 10. Note that due to the uniform load distribution only the symmetric
vibration modes (1 and 3 in the above given frequency band) are excited.

5. CONCLUDING REMARKS

The problem of forced nonlinear vibrations of layered plates is solved. The influence
of shear and rotatory inertia is taken into account. Using Berger's approximation of v.
Karman’s nonlinear plate equations along with a Kantorovich-Galerkin procedure renders
the frequency domain formulation of this problem. For taminates composed of multiple
isotropic layers an etlicient membrane analogy. which has been established for homogeneous
plates. is adopted. As numerical example the nonlineuar trequency response functions of a
composite plate strip under harmonic uniform force-excitation are compared to the linear
solution.
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